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Entangled-photon interferometry for plasmas
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Sub-picosecond coincidence timing from nonlocal intensity interference of entangled photons al-
lows quantum interferometry for plasmas. Using a warm plasma dispersion relation, we correlate
phase measurement sensitivity with different plasma properties or physics mechanisms over 6 orders
of magnitude. Due to Nα (α ≤ −1/2) scaling with the photon number N , quantum interferometry
using entangled light can probe small signals in plasmas not previously accessible. As an exam-
ple, it is predicted that plasmas will induce shifts to a Gaussian dip, a well-known quantum optics
phenomenon.

LIGO’s interferometer has reached a phase sensitivity
equivalent to 10−5× the width of a proton [1]. Even
though such a sensitivity may not be required in many
plasma experiments, we show here that by reaching a
phase sensitivity down to ∼ 1× proton width, a variety of
plasma properties or physics mechanisms not accessible
until now may become directly observables. Observation
of small signals is of broad interest, not only to direct
comparisons between experiments with theory and simu-
lations, but also to predictive plasma science and technol-
ogy, including, for example, harvesting high-temperature
plasmas as a carbon-free and sustainable energy source.
Small amplitude fluctuations in plasma density and mag-
netic fields are universal signatures for enhanced trans-
port, particle and energy loss in turbulent plasmas [2–4].
Identification of new precursors based on even smaller
signals will have significant implications to prediction of
disruptions in tokamak plasmas for fusion energy, to in-
ertial confinement plasmas for initiation and growth of
Rayleigh-Taylor instability and Richtmyer-Meshkov in-
stability, to plasma processing of large-area (300-mm di-
ameter) silicon wafers with feature sizes below 10 nm,
and to laboratory astrophysics experiments with high
Lundquist number (> 107) or large magnetic Reynolds
number (> 104). Predictions of plasma dynamics remain
to be a grand challenge even through modern computing
and growingly sophisticated measurement tools [5–10].
Most instruments and measurements, operating on clas-
sical physics principles, are far from theoretically allowed
limits in sensitivity.

We introduce quantum interferometry that uses en-
tangled photons as sensitive probes for small amplitude
fluctuations in plasmas, or ‘an interferometer for turbu-
lence’. Optical interferometers are widely used in ex-
perimental science including plasma experiments [11–15].
Prior to gravitational wave detection, Michelson inter-
ferometer, Mach-Zehnder interferometer, and Hanbury-
Brown-Twiss stellar interferometer have played pivotal
roles in the 20th century experimental physics [16]. Re-
cent advances in entangled light sources and quantum op-

tics have stimulated the growth of quantum interferom-
etry for experimental physics [17, 18]. Several novel fea-
tures of the entangled-photon interferometers are noted:
(a) the light source is based on entangled photons rather
than lasers; (b) phase detection is based on nonlocal cor-
relation in intensity rather than correlation in field or
amplitude; and (c) phase detection sensitivity is scalable
with the number of photons according to the quantum
limits, ∝ Nα (α ≤ −1/2) for the photon number N . We
use 1 µm photon as a primary example below for quan-
titative estimates. This does not preclude the use of the
photons in the other parts of the electromagnetic spec-
trum for entangled photon interferometry, as long as the
three conditions can be met.

Phase modulation in a plasma Because of the weak
interactions between plasma electrons, ions, atoms, and
atomic agglomerates with the two-photon state from an
entangled photon source, we may adopt the approxima-
tion that a plasma only modulates but does not destroy
quantum information such as photon entanglement. A
plasma may induce a phase change ΦP to photon wave-
functions. A pure real number ΦP corresponds to a uni-
tary transformation of entangled photon wavefunctions
that preserves the probability amplitude.

We first show that, through its dependence on plasma
refractive index n, ΦP = ω

∫
ndl/c, ΦP can vary with

a wide set of plasma parameters. Here
∫
dl is a path

through a plasma, ω the photon angular frequency, and
c the speed of light in vacuum. ΦP = ΦP (n) =
ΦP (ne, ni,B,ve,vi, Te, Ti, · · · ), where ne, ni, B, Te, Ti,
ve, and vi symbolize electron density, ion density, mag-
netic field, electron flow, ion flow, respectively. Quantum
measurements of ΦP , and especially its derivatives such
as ∂ΦP /∂ne, ∂ΦP /∂Bi, ∂ΦP /∂Te, etc. are the basis of
quantum metrology for plasmas. The rest of the paper
will focus on entangled-photon interferometry to measure
ΦP and its variations.

For simplicity, we assume that the plasma frequency
ωpe is well below the cutoff frequency for the entangle
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photons, ωpe =
√

e2ne
ε0me

<< ω, so that entangled photons

pass through a plasma without being reflected. Here ε0
is the vacuum permittivity without the plasma, e the ele-
mentary charge, and me the electron rest mass. We may
treat plasma effects on the entangled photons classically
according to Maxwell’s equations, and obtain in terms of
electric field E,

−∇2E +∇(∇ ·E)− ε0
ω2

c2
E =

ω2

c2
εP ·E. (1)

εP is in general a 3×3 matrix for the anisotropic plasma
dielectric coefficients. Each matrix element may be a sum
of contributions from free electrons and ions. εP may
also include effects from charge-neutral materials such as
a dielectric solid, liquid, or gas mixed with a plasma.

For electromagnetic wave propagation parallel to a uni-
form static magnetic field B0, the plasma refractive in-
dex is dispersive for different frequencies and wavelengths
and has been derived by solving the Vlasov equations for
εP [19, 20],

nR,L =1 +
∑
s

ω2
ps

ω2

∫ ∞
−∞

dv‖

∫ ∞
0

πv2
⊥dv⊥

1

ω − k‖v‖ ± Ωs

×
[
(ω − k‖v‖)

∂Fs
∂v⊥

+ k‖v⊥
∂Fs
∂v‖

]
.

(2)

A magnetized plasma induces birefringence for light

propagation depending on the polarization of the light.
nR,L = kc/ω are the refractive indices for right (R) and
left (L) hand circular polarizations respectively. Here
k = k‖ (the wave vector component parallel to the mag-
netic field) or k⊥ = 0 (the wave vector perpendicular
to the magnetic field) for the photons propagating along
the magnetic field. The plus/minus sign corresponds to
the right/left-hand circular polarization of light. Fs is
the normalized distribution for s-species (electrons and
different types of ions), fs = nsFs(v‖, v⊥), and

∫
dvFs

= 1. The k vector aligns with B0, which is assumed to
be in the z-direction. The refractive indices nR,L can
be further reduced to be a function of the plasma dis-
persion function Z0(ζ±) [20]. Since λ = 1

2k
2
⊥ρ

2
L = 0 for

k⊥ = 0, finite Larmor radius effects do not appear, ρL is
the Larmor radius for an electron or an ion, even though
1
2k

2
‖ρ

2
L ≥ 1 for visible and near infrared light.

Since for an electron or an ion, ζ± =
ω−k‖v‖±Ω

k‖w‖
∼

ω
k‖w‖

� 1, or the plasma thermal and non-thermal mo-

tion are non-relativistic, the asymptotic expansion for
the plasma dispersion function Z0(ζ) ∼ −ζ−1−ζ−3 + · · ·
is used in the Taylor expansion for large ζ±, Z0(ζ) is
slightly different from the Fried-Conte plasma dispersion
function Z(ζ) ∼ −ζ−1−ζ−3/2+· · · . The imaginary term

(∝ ie−ζ
2

) may be neglected for both Z(ζ) and Z0(ζ).
Keep terms to the order ω−4, we obtain

nR,L = 1−
∑
s

ω2
ps

2ω2

[
1∓ Ωs

ω
+ (

Ω2
s

ω2
∓

Ωsk‖v‖s

ω2
+
Ts⊥k

2
‖

msω2
) +O(

1

ω3
)

]
, (3)

where ‘−/+’ is for R/L-mode. The summation is over
different charged particle species (electron and one or
more ions). For the particle species s, ωps, Ωs, v‖s,
Ts⊥ are the plasma frequency, gyrofrequency, flow along
the magnetic field, and temperature perpendicular to the
magnetic field B0, respectively. In a fusion plasma, for
example, there could be deuterons, tritons (for DT fu-
sion) and helium ions due to fusion. To the order ω−3,
we recover the cold plasma approximation from Eq. (3).
The flow and thermal effects do not show up until to the
order ω−4, which is usually neglected for existing instru-
ments [15]. The electron plasma frequency contribution
n(ωpe) = ω2

pe/(2ω
2) = e2ne/(2ε0meω

2) = 2πrec
2ne/ω

2,
dominates over other terms because the electron mass is
much less than the ions, corresponding to n(ωpe) = 4.5×
10−8 for ne = 1020 m−3 and a probe photon wavelength
of 1 µm (cutoff plasma density 1.1×1027 m−3). The pho-
ton transit time lag through a 1-m-long plasma column

relative to vacuum would be τ(ωpe) = 0.15 fs, which
is within the resolution of existing table-top entangled
photon interferometers [21]. For a laser-produced high-
density plasma with an electron density in the range of
1024-1026 m−3 and a plasma column length of 1 to 0.1 cm,
the line-integrated density can reach 1022 to 1023 m−2.
Correspondingly, a photon travel time lag τ(ωpe) is in the
range of 15 to 150 fs, which has been demonstrated by a
growing number of groups since the 1980s [22–25].

We may similarly estimate the magnitude of smaller
amplitude effects in Eq. (3) for 1-µm photons.
For a hydrogen plasma, n(ωpH) = ω2

pH/(2ω
2) =√

me/mHn(ωpe) = 2.3 × 10−2n(ωpe). mH = 1836 me

is the proton mass. For an helium-4 ion (Z = 2)
density fraction of fα =3%, n(ωpHe) = ω2

pHe/(2ω
2) =

Z
√
fαme/mHen(ωpe) = 4.0 × 10−3n(ωpe). n(Ωe) =

(Ωe/ω)n(ωpe) = 9.3 × 10−5n(ωpe) for B0 = 1 Tesla.
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n(v‖e) = (Ωsk‖v‖s/ω
2)n(ωpe) = 1.4× 10−2n(Ωe) = 1.3×

10−6n(ωpe) for electron flow with a kinetic energy of 100
eV. n(T⊥e) = (Te⊥k

2
‖)/(msω

2)n(ωpe) = 2.0×10−4n(ωpe).
In short, increasing phase measurement sensitivity

down to 10−6n(ωpe) ∼ 10−14, equivalent to a length sen-
sitivity of 10−14 m or comparable to 10× the width of
a proton, would allow sensitive probing a broad range of
plasma parameters and their variations. Here we assume
1 µm probe photon wavelength for 1020 m−3 plasmas.
Using longer wavelength photons may improve the phase
sensitivity due to 1/ωk-dependence (k ≥ 2) in Eq. (3).

In phase measurement reaches the quantum limits [26],
measurement sensitivity is given by

ΦP =
ω

c

∫
ndl = ωτp ≥ k0(ηN)α, (4)

where N is the quanta or photon used, α = −1/2 is the
shot noise limit or standard quantum limit [27], α = −1
is the Heisenberg limit. k0 = 1/2 in both limits. η is
the single-photon detection efficiency. Heisenberg limit
may be achieved for entangled photons [28]. The existing
experimental data indicates that current setup (see Fig. 1
below without a plasma) is k0 ∼ 400 for τp = 10 fs (ηN =
100), which is about 103 above the theoretical limits.
Extrapolation to

Quantum metrology for plasmas using entangled pho-
ton pairs We first summarize the theoretical framework
to measure plasma phase-shift ΦP through second-order
correlation in intensity detection, or intensity interfer-
ometry. As in quantum optics and quantum field the-
ory [11, 12, 14], measurement of a photon field may
be described by the second order correlation function
G(2)(1; 2) [13],

G(2)(1; 2) = 〈E(−)(1)E(−)(2)E(+)(2)E(+)(1)〉, (5)

which is historically stimulated by the Hanbury-Brown-
Twiss experiment. 〈O〉 ≡ Tr[ρO] is the sta-
tistically averaged measurement of operator O =
E(−)(1)E(−)(2)E(+)(2)E(+)(1). Here and below, we may
use abbreviated notations of ‘1’ and ‘2’ and suppress ex-
plicit dependence on the position and time of the two
separate detector pairs D1 (r1, t1) and D2 (r2, t2). As
in quantum optics, the photon detection is described by
the electric field operators E(+)(i) ≡ E(+)(ri, ti) (i=1,

2) and their adjoint E(−)(i) =
[
E(+)(i)

]†
. |Ψ〉 repre-

sents the wavefunction of the entangled two-photon or
bi-photon using Dirac ket/bra notation, with 〈Ψ| being
the complex conjugate, satisfying the normalization con-
dition 〈Ψ | Ψ〉 = 1. When we only consider a field |Ψ〉
of photon pairs, G(2)(1; 2) =

∣∣A(1; 2)
∣∣2, and the complex

detection amplitude A(1; 2) is

A(1; 2) = 〈0|E(+)(2)E(+)(1)|Ψ〉. (6)

|0〉 corresponds to the vacuum state of the photon field.
It is clear that A(1; 2) = A(2; 1) since E+(2) commutes
with E+(1), and G(2)(1; 2) = G(2)(2; 1).

We now evaluate G(2)(1; 2) for the configuration shown
in Fig. 1, which uses entangled photon pairs generated
by spontaneous parametric down conversion (SPDC) of
a pump laser in a nonlinear crystal [17]. The SPDC pro-
cess is referred to as type-I, if the two arms of a two-
photon state, called signal and idler photon respectively,
has identical polarizations, and type-II, if they have or-
thogonal polarizations. The process is said to be degen-
erate if the SPDC photon pair have the same free space
wavelength or wave number, and nondegenerate other-
wise. This configuration can be made insensitive to the
photon polarization by selecting the beam splitter and
IF filters.

FIG. 1: (A) Schematic configuration of a single-chord bipho-
ton interferometery for plasma phase meaurement Φp based
on the G(2) correlation function. Entangled photon pairs
(k,k′) are generated by pumping a nonlinear crystal with a
laser, BS1 – : beam splitter, IF: interference filters, D 1 – 2:
Detectors with single-photon sensitivity. (B) Simplified dia-
gram for (A) that illustrates the two path-configurations and
adjustment of the beam splitter (not to scale for visibility) for
intensity interference.

For entangled source function [29]

|Ψ〉 = |0〉+
∑
ωω′

δ(ω + ω′ − ωp)Fωω′ â†(ω)â†(ω′) |0〉 , (7)

the probability amplitude is obtained, after introducing
a new variable ν, so that ω = ωp/2 + ν (+) and ω′ =
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ωp/2− ν (−),

A(t1; t2) = ei(ωp/2)(t1+t2−2τ0)×

[Te−iωp/2(−τ ′p(t1)−τp(t2))

×
∑
ν

e−iν(t2−t1−τp(t2)+τ ′p(t1)))Fνf1(−)f2(+)

−Re−iωp/2(−τ ′p(t2)−τp(t1))

×
∑
ν

e−iν(t1−t2+2δτ−τp(t1+δτ)+τ ′p(t2−δτ))Fνf1(+)f2(−)].

(8)

√
T and

√
R are the transmission and reflection coeffi-

cients of the beamsplitter BS1. R + T = 1 for a lossless
beam splitter. fj(ω) (j =1 ,2) are the band pass filter
function in front of the detector Dj .The plasma phase-
shift ΦP (ω) (or equivalently time lag τP ) only appears in
the path a. A phase compensation component (P.C. in
Fig. 1) may be added to path b, and result in φ0 (con-
stant time lag correspondingly) phase adjustment in b.
Here we assume that the time lag from the BS splitter
are the same for D1 and D2 by symmetric setup of the
two detectors with respect to the BS. For the same rea-
son, δτ are the same with respect to the two detectors,
except for the sign. τp(t− τ0) and τ ′p(t− τ0) are the time
delays caused by plasma. τp is time-dependent. τ0 is the
free space propagation time between the plasma and the
BS.

For f1(−) = f2(+) = 1, assume that Fν is a Gaussian
with a bandwidth ∆ω, G(2)(t1; t2) function is

G(2) =T 2|g[t2 − t1 − τp(t2) + τ ′p(t1)]|2

+R2|g[t1 − t2 + 2δτ − τp(t1 + δτ) + τ ′p(t2 − δτ)]|2

−RTe−iωp/2(τ ′p(t2)−τ ′p(t1)+τp(t1)−τp(t2))

× g[t2 − t1 − τp(t2) + τ ′p(t1)]×
g∗[t1 − t2 + 2δτ − τp(t1 + δτ) + τ ′p(t2 − δτ)] + c.c.

(9)

For a plasma with a linear growth (LG) in time delays,

τp(t) = (a0 +
b

2
)t+ τp, τ

′
p(t) = (a0 −

b

2
)t+ τ ′p, (10)

with a0, b, τp and τ ′p being constants. Let t1 + t2 = 2t,
t2 − t1 = τ , τp − τ ′p = ∆τp, then

G(2)(LG) =

T 2|g[(1− a0)τ − bt−∆τp)]|2

+R2|g[−(1− a0)τ − bt+ (2− b)δτ −∆τp]|2

−RTei(ωp/2)bτg[(1− a0)τ − bt−∆τp]

× g∗[−(1− a0)τ − bt+ (2− b)δτ −∆τp]

+ c.c.

(11)

The mean joint detection probability or the average
count rate for a detection window centered at T0 is

Rc =
1

S0

∫ S0
2

−S0
2

dt1

∫ S0
2

−S0
2

dt2G
(2)S(t1 − t2,∆Sc) (12)

where S(t1− t2,∆Sc) is a concidence detection function,
∆Sc is the coincidence time window, the detection signal
accumulation is over S0. We obtain,

Rc(LG) =C[1− 2RT

R2 + T 2

×B cos
ωp
2

(b− b2/2)δτ

1− a0

× e−∆ω2[(1−b/2)δτ−bt−∆τp]2 ]

(13)

withB ∝ e−
πω2
bb

2

4∆ω2(1−a0)2 . For a steady plasma, a0 = b = 0,

Rc = C

[
1− 2RT

R2 + T 2
e−∆ω2(δτ−∆τp)2

]
. (14)

The physical implication of Eq. (14) is consistent with
the expectation that, changes in plasma refractive index
will induce the shifts in position of the inverse Gaussian
function, with the shift amount ∆τp. The normalized
Rc is shown in Fig. 2, for R = 0.45 and ∆ω = 2π/τ0
with τ0 = 10 fs. The center of the dip position may
be adjusted by inserting a phase object (Φ0 = ωτb) into
path b in Fig. 1. The expected ∆τp as a function of∫
ndl = nL for effects by different ions (H, He – 3% of

electron density), magnetic field (Ωe), electron tempera-
ture, and electron flow are also shown in Fig. 1. Experi-
mentally demonstrated sensitivity is used as the existing
reference for expected sensitivity. Further optimization
schemes such as multi-path design, longer photon wave-
lengths (preferred for smaller nL), and higher entangled
photon fluxes will increase sensitivities towards the equiv-
alent length (∆τpc) comparable to the proton radius.

For the time-dependent cases a0, b 6= 0. In this case,
we expect both the time-dependent shift of the inverse
Gaussian, slope = b/(1-b/2), and the broadening factor
δω(1−b/2). We expect different sensitivities by choosing
several setup configurations as summarized in Table. I.

TABLE I: Relative phase shifts due to birefringence of a
magnetized plasma for different setups. The two path-
configurations are: [S] for one of the two paths passing
through the plasma, while the other path passing through
a non-dispersive medium; [D] for both paths through the
plasma.

Path symmetry relative phase shift

S N nR or nL

D Y nR, nR; or nL, nL

D Anti-symmtry nR, nL
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FIG. 2: (Top) Theoretical prediction of the plasma-induced
shift in entangled photon correlation according to Eq. (14),
The exact amount depends on plasma parameters as shown
at the Bottom frame for different plasma effects as a function
of line-integrated plasma density. The photon wavelength is
assumed to be 1 µm.

In summary, through sub-picosecond timing by entan-
gled photons and nonlocal intensity correlation, we in-
troduce a quantum interferometer concept to measure
small amplitude signals including fluctuations in turbu-
lent and other plasmas. Analysis of a warm plasma dis-
persion function has revealed rich physics that is typi-
cally neglected and hard to measure presently because of
ω−4-dependence on the photon frequency ω. Quantum
metrology based on entangled photons and other non-
classical source of light could open up new avenues to
experiments on fundamental and complex problems such
as anomalous transport in turbulent plasmas and predic-
tive plasma science. This work is supported in part by
the LANL LDRD program.
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